

Техническая информация Радар

Измерение уровня жидкостей

VEGAPULS WL 61

VEGAPULS 61

VEGAPULS 62

VEGAPULS 63

VEGAPULS 64

VEGAPULS 65

VEGAPULS 66

Содержание

1	Принцип измерения	3
	Обзор типов	
	Приборы и применения	
	Критерии выбора	
5	Измерительные диапазоны	9
	Обзор корпусов	
7	Монтаж	.11
8	Элентроника - 4 20 mA/HART - двухпроводная	. 13
9	Элентроника - 4 20 mA/HART - четырехпроводная	. 14
10	Элентроника - Profibus PA	. 15
	Элентроника - Foundation Fieldbus	
	Элентроника - протонол Modbus, Levelmaster	
	Настройка	
14	Размеры	.20

Соблюдение указаний по безопасности для Ех-применений

Для Ex-применений следует соблюдать особые указания по безопасности, которые прилагаются к каждому устройству в соответствующем исполнении, а также могут быть загружены с нашей домашней страницы www.vega.com. Во взрывоопасных зонах должны соблюдаться соответствующие нормы и правила, а также условия сертификатов соответствия датчиков и устройств питания. Датчики можно эксплуатировать только на искробезопасных токовых цепях. Допустимые значения электрических параметров следует брать из соответствующего сертификата.

1 Принцип измерения

Принцип измерения VEGAPULS WL 61, 61, 62, 65, 66

Антенная система датчика передает короткие микроволновые импульсы на измеряемый продукт и принимает их после отражения от поверхности продукта. Время от передачи до приема сигнала пропорционально уровню заполнения емкости. Специальная процедура растяжения времени обеспечивает надежное и точное измерение предельно коротких временных периодов и пересчет в расстояние до уровня.

Эти радарные датчики работают с малой излучаемой мощностью в частотных диапазонах С и К.

Принцип измерения VEGAPULS 64

Через антенну датчика излучается непрерывный высокочастотный радарный сигнал. Излученный сигнал отражается от поверхности продукта и принимается антенной как эхо-сигнал.

Разность между излученным и принятым сигналом определяется посредством специального алгоритма в электронике датчика и преобразуется в расстояние до уровня.

VEGAPULS 64 работает с малой излучаемой мощностью в частотном диапазоне W.

Применение на жидкостях

Датчики с низкочастотным диапазоном С предназначены для непрерывного измерения уровня жидкостей при сложных условиях процесса. Уровнемеры применяется на резервуарах-хранилищах, технологических емкостях или опускных трубах. Датчики с различными исполнениями антенны применимы в любых отраслях промышленности.

Датчики с высокочастотным диапазоном К предназначены для непрерывного измерения уровня жидкостей. Уровнемеры применяется на резервуарах-хранилищах, реакторах и технологических емкостях, в том числе при сложных условиях процесса. Датчики в модификациях из различных материалов и с различными исполнениями антенны применимы практически в любых отраслях промышленности.

Датчики с высокочастотным диапазоном W предназначены для непрерывного измерения уровня жидкостей. Особым преимуществом для применения в малых емкостях или в стесненных условиях являются присоединения малых размеров. Очень хорошая фокусировка сигнала позволяет применять датчик в емкостях с внутренними конструкциями, например мешалками или нагревательными спиралями.

Преимущества

Бесконтактная радарная техника отличается высокой точностью измерения. На измерение не влияют ни колебания свойств продукта, ни условий процесса, таких как температура и давление.

Входная величина

Измеряемой величиной является расстояние между присоединением датчика и поверхностью продукта. Базовой плоскостью, в зависимости от исполнения датчика, является уплотнительная поверхность на шестиграннике присоединения или нижняя сторона фланца.

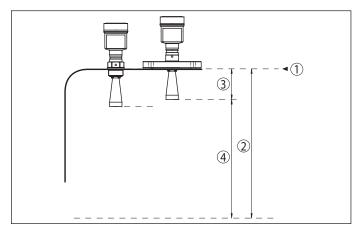


Рис. 1: Данные для входной величины VEGAPULS 62

- 1 Базовая плоскость
- Измеряемая величина, макс. диапазон измерения
- 3 Длина антенны
- Полезный диапазон измерения

2 Обзор типов

•		Агрессивные жидкости в малых емкостях при простых условиях процесса	Резервуары-хранилища и технологические емкости при самых сложных условиях процесса
Макс. диапазон измере- ния	15 m (49.21 ft)	35 m (114.8 ft)	35 m (114.8 ft)
Антенна/Материал	Пластиковая рупорная антенна	Пластиковая рупорная антенна/полно- стью герметизированная PVDF	Рупорная антенна или встроенная о- пускная труба ½"/316L
Присоединение/Материал	Резьба G1½/PBT или монтажная скоба/316L	Резьба G1½/PVDF, монтажная скоба/316L или фланец/PP	Резьба G1½/316L по DIN 3852-А или фланец/316L, сплав C22 (2.4602)
Температура процесса	-40 +80 °C -40 +176 °F)	-40 +80 °C (-40 +176 °F)	-196 +450 °C (-321 +842 °F)
Давление процесса	-1 +2 bar/-100 +200 kPa (-14.5 +29.0 psi)	-1 +3 bar/-100 +300 kPa (-14.5 +43.5 psi)	-1 +160 bar/-100 +16000 kPa (-14.5 +2320 psig)
Погрешность измерения	≤ 2 mm	≤ 2 mm	≤ 2 mm
Частотный диапазон	Диапазон К	Диапазон К	Диапазон К
Выход сигнала	 4 20 mA/HART - двухпроводный Profibus PA Foundation Fieldbus 	ный 4 20 mA/HART - двухпроводный 4 20 mA/HART - четырехпроводный Profibus PA Foundation Fieldbus Протокол Modbus и Levelmaster	
Индикация/Настройка	PACTware VEGADIS 62	PLICSCOM PACTware VEGADIS 81 VEGADIS 62	
Сертификация	● ATEX ● IEC	 ATEX IEC Судостроение Защита от переполнения FM CSA EAC (Gost) 	

VEGAPULS 63

VEGAPULS 65

VEGAPULS 66

	T .			
Агрессивные жидкости при самых сложных ус сложных условиях процесса Жидкости при самых сложных ус виях процесса		Агрессивные жидкости при простых условиях процесса	Резервуары-хранилища и технологические емкости при самых сложных условиях процесса	
35 m (114.83 ft)	30 m (98.43 ft)	35 m (114.83 ft)	35 m (114.83 ft)	
Полностью герметизированная антенная система/PTFE, PFA или PVDF	Резьба с встроенной рупорной антенной/РЕЕК и 316L или сплав С 22, пластиковая рупорная антенна/РР, фланец с герметизированной антенной системой/РТГЕ и РFA	Стержневая антенна, герметизированная PVDF или PTFE, крышка PFA	Рупорная антенна или встроенная о- пускная труба 2"/316L	
Фланец или гигиеническое присоединение/316L, сплав 400 (2.4360)	Монтажная скоба/316L, резьба/316L или сплав С 22, фланец/316L, гигие- нические присоединения/316L	Резьба G1½ по DIN 3852-A/PVDF или 316L, фланец/покр. PTFE	Фланец/316L, сплав С22 (2.4602)	
-196 +200 °C (-321 +392 °F)	-196 +200 °C (-321 +392 °F)	-40 +150 °C (-40 +302 °F)	-60 +400 °C (-76 +752 °F)	
-1 +16 bar/-100 +1600 kPa	-1 25 bar/-100 2500 kPa	-1 +16 bar/-100 +1600 kPa	-1 +160 bar/-100 +16000 kPa	
(-14.5 +232 psig)	(-14.5 362.5 psig)	(-14.5 +232 psig)	(-14.5 +2321 psi)	
≤ 2 mm	≤ 1 mm	≤ 8 mm	≤ 8 mm	
Диапазон К	Диапазон W	Диапазон С	Диапазон С	
 4 20 mA/HART - двухпроводный 4 20 mA/HART - четырехпроводный Profibus PA Foundation Fieldbus Протокол Modbus и Levelmaster 	• 4 20 mA/HART - двухпроводный	 4 20 mA/HART - двухпроводный 4 20 mA/HART - четырехпроводный Profibus PA Foundation Fieldbus Протокол Modbus и Levelmaster 		
PLICSCOM PACTware VEGADIS 81 VEGADIS 62	PLICSCOM PACTware VEGADIS 81 VEGADIS 82	PLICSCOM PACTware VEGADIS 81 VEGADIS 62		
 ATEX IEC Судостроение Защита от переполнения FM CSA EAC (Gost) 	 ATEX IEC Судостроение Защита от переполнения FM CSA EAC (Gost) 	 ATEX IEC Судостроение Защита от переполнения FM CSA 		

3 Приборы и применения

VEGAPULS WL 61

VEGAPULS WL 61 - идеальный уровнемер для применения в водном хозяйстве. Датчик предназначен для измерения уровня на водоочистных сооружениях, насосных станциях, камерах ливнеспуска, для измерения расхода в открытых руслах и уровня в открытых водоемах. Имеются различные монтажные приспособления для оптимальной установки датчика. Благодаря защищенному от затопления корпусу IP 68, VEGAPULS WL 61 может длительно эксплуатироваться без обслуживания.

VEGAPULS 61

VEGAPULS 61 предназначен для непрерывного измерения уровня жидкостей при несложных условиях процесса. Имеются различные возможности монтажа датчика. Благодаря герметизированной антенной системе, VEGAPULS 61 не требует обслуживания.

Исполнение с герметизированной антенной системой применяется для измерения уровня агрессивных жидкостей в малых емкостях. Исполнение с пластиковой рупорной антенной может применяться для измерения расхода в открытых руслах или уровня в водоемах.

VEGAPULS 62

VEGAPULS 62 предназначен для непрерывного измерения уровня жидкостей в резервуарах-хранилищах, реакторных и технологических емкостях. Благодаря различным исполнениям антенн и материалам, а также расширенному диапазону температуры и давления процесса, VEGAPULS 62 применим при различных, в том числе сложных, условиях процесса в любых отраслях промышленности.

Исполнение с рупорной антенной применяется на резервуараххранилищах и технологических емкостях для измерения уровня растворителей, углеводородов и горючих веществ. Исполнение с параболической антенной применяется для измерения уровня продуктов с низким значением диэлектрической постоянной є, и при больших диапазонах измерения.

VEGAPULS 63

VEGAPULS 63 предназначен для непрерывного измерения уровня на агрессивных жидкостях либо при гигиенических условиях в резервуарах-хранилищах, технологических, дозирующих и реакторных емкостях. Герметизированная антенная система VEGAPULS 63 исключает загрязнение и гарантирует длительную эксплуатацию без обслуживания. Монтаж заподлицо обеспечивает оптимальную возможность очистки, в том числе при гигиенических требованиях.

VEGAPULS 64

Радарный датчик VEGAPULS 64 предназначен для непрерывного измерения уровня жидкостей.

Благодаря малым присоединительным размерам и очень хорошей фокусировке сигнала, обеспечиваемой высокой частотой 80 ГГц с очень малой шириной диаграммы направленности, уровнемер может применяться как на малых, так и на больших емкостях.

VEGAPULS 65

VEGAPULS 65 предназначен для непрерывного измерения уровня жидкостей при несложных условиях процесса. Благодаря тонкой стержневой антенне, датчик может монтироваться на емкостях с малыми присоединительными отверстиями.

VEGAPULS 66

Радарный уровнемер VEGAPULS 66 предназначен для непрерывного измерения уровня жидкостей при сложных условиях процесса. Уровнемер применяется на резервуарах-хранилищах, технологических емкостях или опускных трубах. VEGAPULS 66 с различными исполнениями антенны применим в любых отраслях промышленности.

Области применения

Описанные здесь радарные датчики VEGAPULS применяются для бесконтактного измерения уровня жидкостей любого вида, в том

числе под высоким давлением и при экстремальных температурах. Датчики могут применяться как на простых, так и на агрессивных жидкостях, а также при высочайших гигиенических требованиях.

Измерение уровня в емкостях

При измерении на емкостях с коническим днищем датчик рекомендуется монтировать по центру емкости, чтобы измерение было возможно вплоть до дна емкости.

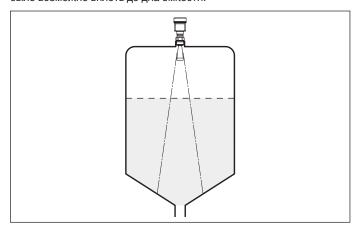


Рис. 9: Измерение уровня на емкостях с коническим днищем

Измерение в уравнительной трубе

Измерение в уравнительной трубе позволяет исключить влияние внутренних конструкций и турбулентности измеряемой среды, что является необходимым условием для обеспечения возможности измерения уровня продуктов с низким значением диэлектрической постоянной (εг ≥ 1,6). При склонности продукта к налипанию измерение в уравнительной трубе нецелесообразно.

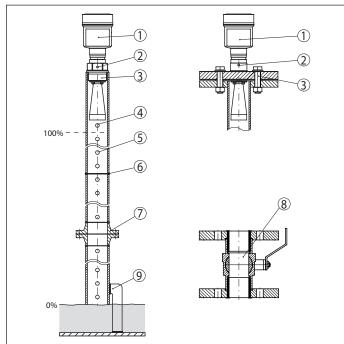


Рис. 10: Монтаж в уравнительной трубе

- Радарный уровнемер
- Метка поляризации
- 3 Резьба или фланец на приборе
- 4 Вентиляционное отверстие
- 5 Отверстия
- Сварной шов
- 6 7 Приварной фланец
- 8 Полнопроходной шаровой кран
- Крепление уравнительной трубы

Измерение расхода

Расход в открытых лотках с заданным сужением, например с четырехугольным сливом, может быть определен посредством измерения уровня.

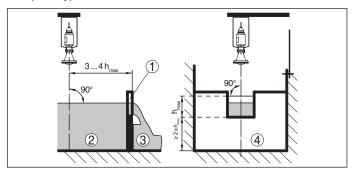


Рис. 11: Измерение расхода с прямоугольным сливом: d_{\min} = минимальное расстояние от датчика; h_{\max} = максимальное заполнение прямоугольного

- Диафрагма слива (вид сбоку)
- Верхний бьеф 2
- 3 4 Нижний бьеф
- Диафрагма слива (вид со стороны нижнего бьефа)

Измерение при сложных условиях

Исполнение электроники с повышенной чувствительностью позволяет применять устройство на продуктах с плохими отражательными свойствами или с низким значением диэлектрической постоянной е.

4 Критерии выбора

		VEGAPULS						
		WL 61	61	62	63	64	65	66
Емкость	Малые емкости	•	•	-	•	•	-	-
	Резервуары-хранилища	•	•	•	•	•	•	•
	Технологические емкости	-	-	•	•	•	-	•
Іроцесс	Простые условия процесса	•	•	•	•	•	•	•
	Тяжелейшие условия процесса	-	-	•	•	•	-	•
	Агрессивные жидкости	-	•	-	•	•	•	•
	Образование пузырьков или пены	-	-	-	-	•	•	•
	Волнение поверхности	-	_	_	-	•	•	•
	Образование пара или конденсата	•	•	•	•	•	-	•
	Налипания	•	•	•	•	•	-	•
	Измерение расхода	•	•	•	-	•	-	-
І онтаж	Монтаж заподлицо	•	•	_	•	•	-	-
	Резьбовые присоединения	•	•	•	-	•	•	-
	Фланцевые присоединения	•	•	•	•	•	•	•
	Гигиенические типы присоединения	-	•	_	•	•	•	_
	Монтажная скоба	•	•	_	-	•	-	-
нтенна	Удлинение антенны	-	_	•	-	_	-	•
	Антенна - опускная труба	-	-	•	-	-	-	•
	Узкий лепесток диаграммы направленности	-	_	•	•	•	-	-
	Измерение в выносной или опускной трубе	•	•	•	•	-	-	•
	Продувочное присоединение	-	_	•	-	-	-	•
Іригодность для специа-	Химическая промышленность	-	_	•	•	•	-	_
изированных по отраслям ромышленности приме-	Энергетика	•	•	_	•	•	-	_
ений	Пищевое	-	-	_	•	•	-	-
	Металлургия	-	-	•	-	-	-	-
	Морская нефтедобыча	-	-	_	-	•	-	•
	Бумажная промышленность	-	•	•	•	•	-	-
	Нефтехимия	-	-	•	•	•	-	•
	Фармацевтическая промышленность	-	•	_	•	•	-	-
	Судостроение	-	-	_	•	•	-	•
	Защита окружающей среды и переработка отходов	-	-	•	•	•	-	•
	Водоснабжение и сточные воды	•	•	-	-	•	-	•
	Цементная промышленность	_	_	•	_	_	_	_

5 Измерительные диапазоны

Емкость

Применения	Резе	рвуар	Резервуар с циркуляцией продукта		Емкость с мешалками	
VEGAPULS 62	DN 50 (антенна ø дN 80 (антенна ø дN 50 (антенна ø д8 мм) дN 80 (антенна в дим) дN 80 (антенна в дим) дN 80 (антенна в дим) дим видина в дим в дим видина в дим в дим видина		DN 80 (антенна ø 75 мм)	DN 50 (антенна ø 48 мм)	DN 80 (антенна ø 75 мм)	
		DN 100 (антенна ø 95 мм)		DN 100 (антенна ø 95 мм)		DN 100 (антенна ø 95 мм)
VEGAPULS 63	DN 50	DN 80, DN 100	DN 50	DN 80, DN 100	DN 50	DN 80, DN 100
Диэлектрическая проницаемость <3	до 20 м (65.62 ft)	до 35 м (114.83 ft)	до 20 м (65.62 ft)	до 35 м (114.83 ft)	до 10 м (32.81 ft)	до 20 м (65.62 ft)
Диэлектрическая проницаемость 3 10	до 20 м (65.62 ft)	до 35 м (114.83 ft)	до 20 м (65.62 ft)	до 35 м (114.83 ft)	до 10 м (32.81 ft)	до 20 м (65.62 ft)
Диэлектрическая проницаемость >10	до 20 м (65.62 ft)	до 35 м (114.83 ft)	до 20 м (65.62 ft)	до 35 м (114.83 ft)	до 20 м (65.62 ft)	до 35 м (114.83 ft)

Измерительная труба

Применения	Уравнительная труба		0	ная труба
VEGAPULS 62	DN 50 (антенна ø 48 мм)	DN 80 (антенна ø 75 мм)	DN 50 (антенна ø 48 мм)	DN 80 (антенна ø 75 мм)
		DN 100 (антенна ø 95 мм)		DN 100 (антенна ø 95 мм) ¹⁾
VEGAPULS 63	DN 50	DN 80, DN 100	DN 50	DN 80, DN 100
Диэлектрическая проницаемость <3	до 30 м	до 35 м (114.83 ft)	до 30 м	до 35 м (114.83 ft)
Диэлектрическая проницаемость 3 10	до 30 м	до 35 м (114.83 ft)	до 30 м	до 35 м (114.83 ft)
Диэлектрическая проницаемость >10	до 30 м	до 35 м (114.83 ft)	до 30 м	до 35 м (114.83 ft)

выносной трубе.

¹⁾ Возможно применение радарного датчика, однако рекомендуется датчик с направленными микроволнами, на который мало влияют отверстия в

6 Обзор корпусов

Пластик РВТ	©	
Степень защиты	IP 66/IP 67	IP 66/IP 67
Исполнение	Однокамерный	Двухкамерный
Область применения	Общепромышленные условия	Общепромышленные условия

Алюминий	-	
Степень защиты	IP 66/IP 67, IP 66/IP 68 (1 bar)	IP 66/IP 67, IP 66/IP 68 (1 bar)
Исполнение	Однокамерный	Двухкамерный
Область применения	Общепромышленные условия с повышенными механическими требованиями	Общепромышленные условия с повышенными механическими требованиями

Нержавеющая сталь 316L			
Степень защиты	IP 66/IP 67	IP 66/IP 67, IP 66/IP 68 (1 bar)	IP 66/IP 67, IP 66/IP 68 (1 bar)
Исполнение	Однокамерный электрополированный	Однокамерный литой (точное литье)	Двухкамерный литой (точное литье)
		Агрессивная окружающая среда, повышенные механические требования	Агрессивная окружающая среда, повышенные механические требования

7 Монтаж

Монтажная позиция

При монтаже датчика расстояние от стенки емкости должно составлять не менее 200 мм (7.874 in). При монтаже уровнемера в центре выпуклой или округлой крыши емкости возможны множественные эхосигналы, которые, однако, можно игнорировать с помощью соответствующей настройки.

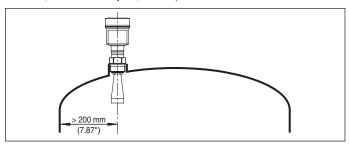


Рис. 24: Монтаж радарного датчика на округлой крыше емкости

Примеры монтажа

Примеры монтажа и измерительных установок для отдельных датчиков показаны на рисунках ниже.

Водоотливный шахтный ствол

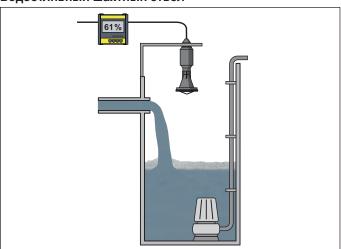


Рис. 25: Измерение уровня в водоотливном шахтном стволе посредством VFGAPUI S WI 61

В условиях суженного места сильно сфокусированный измерительный сигнал VEGAPULS WL 61 имеет значительные преимущества. Датчик работает надежно даже при пенообразовании и налипании продукта на стенках шахтного ствола.

Резервуар для кислоты

Рис. 26: Измерение уровня в резервуаре с кислотой с помощью VEGAPULS 61

Для измерения уровня в резервуаре с кислотой особенно применим бесконтактный метод.

VEGAPULS 61 имеет малые размеры присоединения и антенну, герметизированную PVDF. Датчик нечувствителен к колебаниями температуры и присутствующим газовым фазам.

Реактор

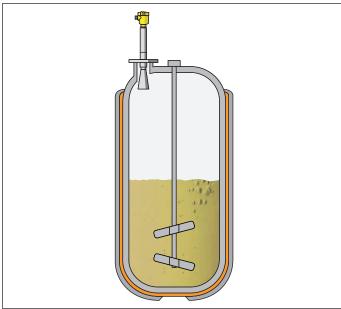


Рис. 27: Измерение уровня в реакторной емкости посредством VEGAPULS 62

При производстве смолы различные исходные продукты смешиваются с растворителями и путем подачи тепла доводятся до реакции.

Бесконтактное измерение с помощью VEGAPULS 62 является идеальным для применения при производстве продуктов реакции. Измерение производится без непосредственного контакта с измеряемой средой, поэтому на датчике не образуется отложений продукта.

Выпарной аппарат для сахара

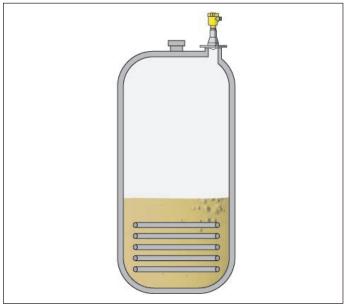


Рис. 28: Измерение уровня в выпарном аппарате для производства сахара с помощью VEGAPULS 63

Для измерения уровня в выпарном аппарате особенно применим VEGAPULS 63.

Рупорная антенна, герметизированная РТFE, защищена от загрязнения клейким соком. Датчик устойчив к повышенному и пониженному давлению, в том числе к гидравлическим ударам.

Технологические емкости

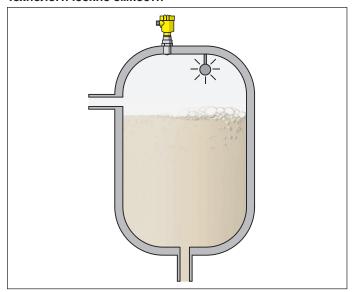


Рис. 29: Измерение уровня в маленькой технологической емкости с помощью **VEGAPULS 64**

Хорошо сфокусированный сигнал VEGAPULS 64 имеет большие преимущества при применении на малых емкостях в пищевой промышленности. Уровнемер надежно работает даже при частом заполнении и опорожнении емкости.

Резервуар

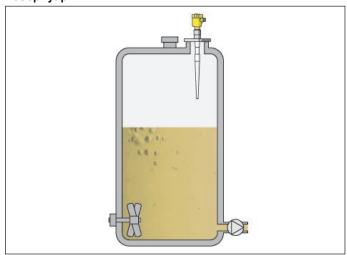


Рис. 30: Измерение уровня в резервуаре-хранилище с помощью VEGAPULS

Для измерения уровня в резервуаре-хранилище особенно применим VEGAPULS 65.

Накопительная башня

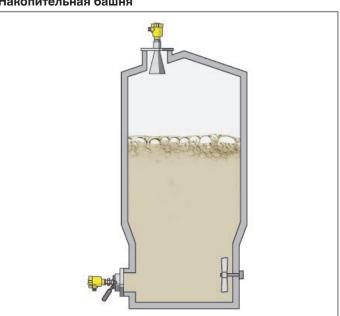


Рис. 31: Измерение уровня в накопительной башне с помощью VEGAPULS 66

Для измерения уровня в накопительной башне с бумажной массой особенно применим VEGAPULS 66.

Датчик с большой антенной и низкочастотной измерительной системой хорошо работает также при образовании конденсата и неспокойной поверхности продукта.

8 Электроника - 4 ... 20 mA/HART - двухпроводная

Конструкция электроники

Съемный блок электроники установлен в отсеке электроники корпуса прибора и в случае неисправности может быть заменен самим пользователем. Для защиты от вибраций и влажности электроника полностью залита компаундом.

На верхней стороне электроники находятся соединительные клеммы для подключения к источнику питания, а также разъем I^2 С для параметрирования. В двухкамерном корпусе соединительные клеммы размещены в отдельном отсеке подключения.

Питание

Подача питания и передача токового сигнала осуществляются по одному и тому же двухпроводному кабелю. Рабочее напряжение питания зависит от исполнения прибора.

Напряжение питания, см. Руководство по эксплуатации датчика, гл. "*Технические данные*".

Должна быть предусмотрена безопасная развязка цепи питания от цепей тока сети по DIN EN 61140 VDE 0140-1.

Данные напряжения питания

- Рабочее напряжение
 - 9,6 ... 35 V DC
 - 12 ... 35 V DC
- Допустимая остаточная пульсация (устройство без взрывозащиты или Ex ia)
 - для $9,6 \text{ V} < \text{U}_{\text{N}} < 14 \text{ V}$: ≤ $0,7 \text{ V}_{\text{eff}}$ ($16 \dots 400 \text{ Hz}$)
 - для 18 V< U_N < 35 V: ≤ 1,0 V_{eff} (16 ... 400 Hz)

Для рабочего напряжения нужно учитывать следующие дополнительные влияния:

- Уменьшение выходного напряжения источника питания под номинальной нагрузкой (например при токе датчика в состоянии отказа 20,5 mA или 22 mA)
- Влияние других устройств в токовой цепи (см. значения нагрузки в Руководстве по эксплуатации датчика, гл. "Технические данные")

Соединительный кабель

Устройство подключается посредством стандартного двухпроводного неэкранированного кабеля. В случае возможности электромагнитных помех выше контрольных значений по EN 61326-1 для промышленных зон, рекомендуется использовать экранированный кабель.

Для работы в многоточечном режиме HART рекомендуется использовать экранированный кабель.

Экранирование кабеля и заземление

Если требуется экранированный кабель, кабельный экран рекомендуется подключить к потенциалу земли с обеих сторон. В датчике экран следует подключить непосредственно к внутренней клемме заземления. Внешняя клемма заземления на корпусе должна быть низкоомно соединена с потенциалом земли.

Подключение

Однокамерный корпус

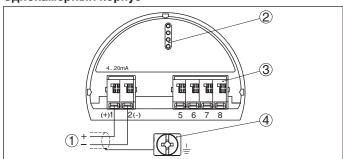


Рис. 32: Отсек электроники и подключения (однокамерный корпус)

- 1 Питание/Выход сигнала
- 2 Для модуля индикации и настройки или интерфейсного адаптера
- Для выносного блока индикации и настройки
- 4 Клемма заземления для подключения экрана кабеля

Двухкамерный корпус

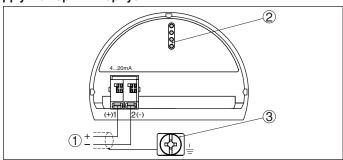


Рис. 33: Отсек подключения (двухкамерный корпус)

- 1 Питание/Выход сигнала
- 2 Для модуля индикации и настройки или интерфейсного адаптера
- Клемма заземления для подключения экрана кабеля

Назначение проводов соединительного кабеля VEGAPULS WL 61

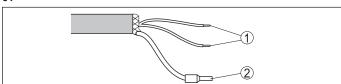


Рис. 34: Назначение проводов постоянно подключенного соединительного кабеля

- Коричневый (+) и голубой (-): к источнику питания или системе формирования сигнала
- 2 Экранирование

9 Электроника - 4 ... 20 mA/HART - четырехпроводная

Конструкция электроники

Съемный блок электроники установлен в отсеке электроники корпуса прибора и в случае неисправности может быть заменен самим пользователем. Для защиты от вибраций и влажности электроника полностью залита компаундом.

На верхней стороне блока электроники находятся контактные штырьки интерфейса I²C для параметрирования. Соединительные клеммы для питания размещены в отдельном отсеке подключения.

Питание

Питание и токовый выход обеспечиваются в соответствии с требованием безопасной развязки через развязанные двухпроводные соединительные кабели.

- Рабочее напряжение при исполнении для малого напряжения
 - 9,6 ... 48 V DC, 20 ... 42 V AC, 50/60 Hz
- Рабочее напряжение при исполнении для сетевого напряжения
 - 90 ... 253 V AC, 50/60 Hz

Соединительный кабель

Для подключения токового выхода 4 ... 20 mA используется стандартный двухпроводный неэкранированный кабель. В случае возможности электромагнитных помех выше контрольных значений по EN 61326 для промышленных зон, рекомендуется использовать экранированный кабель.

Для подачи питания требуется сертифицированный электропроводный кабель с РЕ-проводом.

Экранирование кабеля и заземление

Если требуется экранированный кабель, кабельный экран рекомендуется подключить к потенциалу земли с обеих сторон. В датчике экран следует подключить непосредственно к внутренней клемме заземления. Внешняя клемма заземления на корпусе должна быть низкоомно соединена с потенциалом земли.

Подключение (двухкамерный корпус)

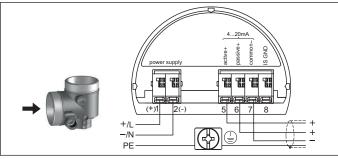


Рис. 35: Отсек подключения (двухкамерный корпус)

- 1 Питание
- 2 Выход сигнала 4 ... 20 mA активный
- 3 Выход сигнала 4 ... 20 mA пассивный

Клемма	Функция	Полярность
1	Питание	+/L
2	Питание	-/N
5	Выход 4 20 mA (активный)	+
6	Выход 4 20 mA (пассив- ный)	+
7	Масса - выход	-
8	Функциональная земля при монтаже по CSA	

10 Электроника - Profibus PA

Конструкция электроники

Съемный блок электроники установлен в отсеке электроники корпуса прибора и в случае неисправности может быть заменен самим пользователем. Для защиты от вибраций и влажности электроника полностью залита компаундом.

На верхней стороне электроники находятся соединительные клеммы для подключения к источнику питания, а также штекерный разъем I²C для параметрирования. В двухкамерном корпусе эти соединительные элементы размещены в отдельном отсеке подключения.

Питание

Питание осуществляется через соединитель сегментов DP/PA. Данные напряжения питания

- Рабочее напряжение
 - 9 ... 32 V DC
- Макс. число датчиков на один соединитель шинных сегментов DP/PA
 - 32

Соединительный кабель

Подключение выполняется с помощью экранированного кабеля в соответствии со спецификацией шины Profibus.

Подключение осуществляется в соответствии со спецификацией Profibus. В частности, необходимо предусмотреть соответствующие оконечные нагрузки шины.

Экранирование кабеля и заземление

В системах с выравниванием потенциалов кабельный экран на источнике питания, в соединительной коробке и на датчике нужно соединить непосредственно с потенциалом "земли". Для этого в датчике экран должен быть подключен прямо к внутренней клемме заземления. Внешняя клемма заземления на корпусе должна быть низкоомно соединена с выравниванием потенциалов.

В случае установок без выравнивания потенциалов, подключите кабельный экран на устройстве питания и на датчике прямо к потенциалу земли. В соединительной коробке или Т-распределителе экран короткого кабеля к датчику нельзя подключать ни к потенциалу земли, ни к другому кабельному экрану.

Подключение

Однокамерный корпус

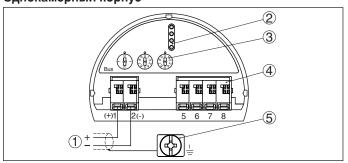


Рис. 36: Отсек электроники и подключения (однокамерный корпус)

- 1 Питание/Выход сигнала
- ... 2 Для модуля индикации и настройки или интерфейсного адаптера
- 3 Переключатель для выбора шинного адреса
- 4 Для выносного блока индикации и настройки
- 5 Клемма заземления для подключения экрана кабеля

Подключение (двухкамерный корпус)

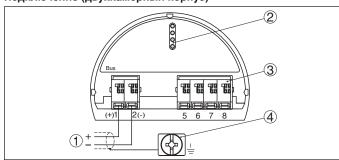


Рис. 37: Отсек подключения (двухкамерный корпус)

- 1 Питание. выход сигнала
- 2 Для модуля индикации и настройки или интерфейсного адаптера
- 3 Для выносного блока индикации и настройки
- 4 Клемма заземления для подключения экрана кабеля

Назначение проводов соединительного кабеля VEGAPULS WL 61



Рис. 38: Назначение проводов постоянно подключенного соединительного кабеля

- Коричневый (+) и голубой (-): к источнику питания или системе формирования сигнала
- 2 Экранирование

11 Электроника - Foundation Fieldbus

Конструкция электроники

Съемный блок электроники установлен в отсеке электроники корпуса прибора и в случае неисправности может быть заменен самим пользователем. Для защиты от вибраций и влажности электроника полностью залита компаундом.

На верхней стороне электроники находятся соединительные клеммы для подключения к источнику питания, а также разъем I^2 С для параметрирования. В двухкамерном корпусе соединительные клеммы размещены в отдельном отсеке подключения.

Питание

Питание осуществляется через шинную линию Н1.

Данные напряжения питания

- Рабочее напряжение
 - 9 ... 32 V DC
- Макс. число датчиков
 - 32

Соединительный кабель

Подключение выполняется с помощью экранированного кабеля в соответствии со спецификацией шины.

Подключение осуществляется в соответствии со спецификацией полевой шины. В частности, необходимо предусмотреть соответствующие оконечные нагрузки шины.

Экранирование кабеля и заземление

В системах с выравниванием потенциалов кабельный экран на источнике питания, в соединительной коробке и на датчике нужно соединить непосредственно с потенциалом "земли". Для этого в датчике экран должен быть подключен прямо к внутренней клемме заземления. Внешняя клемма заземления на корпусе должна быть низкоомно соединена с выравниванием потенциалов.

В случае установок без выравнивания потенциалов, подключите кабельный экран на устройстве питания и на датчике прямо к потенциалу земли. В соединительной коробке или Т-распределителе экран короткого кабеля к датчику нельзя подключать ни к потенциалу земли, ни к другому кабельному экрану.

Подключение

Однокамерный корпус

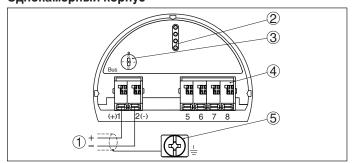


Рис. 39: Отсек электроники и подключения (однокамерный корпус)

- 1 Питание/Выход сигнала
- Штырьковые контакты для модуля индикации и настройки или интерфейсного адаптера
- Переключатель для выбора шинного адреса
- 4 Для выносного блока индикации и настройки
- 5 Клемма заземления для подключения экрана кабеля

Подключение (двухкамерный корпус)

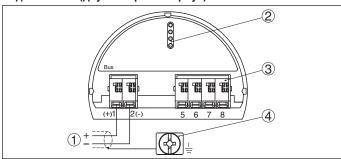


Рис. 40: Отсек подключения (двухкамерный корпус)

- 1 Питание. выход сигнала
- 2 Для модуля индикации и настройки или интерфейсного адаптера
- 3 Для выносного блока индикации и настройки
- 4 Клемма заземления для подключения экрана кабеля

Назначение проводов соединительного кабеля VEGAPULS WL 61

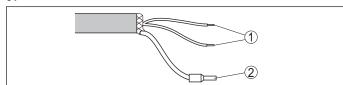


Рис. 41: Назначение проводов постоянно подключенного соединительного кабеля

- Коричневый (+) и голубой (-): к источнику питания или системе формирования сигнала
- 2 Экранирование

12 Электроника - протокол Modbus, Levelmaster

Конструкция электроники

Съемный блок электроники установлен в отсеке электроники корпуса прибора и в случае неисправности может быть заменен самим пользователем. Для защиты от вибраций и влажности электроника полностью залита компаундом.

На верхней стороне блока электроники находятся контактные штырьки интерфейса I²C для параметрирования. Соединительные клеммы для питания размещены в отдельном отсеке подключения.

Питание

Питание осуществляется через хост Modbus (RTU).

- Рабочее напряжение
 - 8 ... 30 V DC
- Макс. число датчиков
 - 32

Соединительный кабель

Для подключения устройства применяется стандартный двухпроводный витой кабель, подходящий для RS 485. В случае возможности электромагнитных помех выше контрольных значений по EN 61326 для промышленных зон, рекомендуется использовать экранированный кабель.

Для питания требуется отдельный двухпроводный кабель.

Подключение осуществляется в соответствии со спецификацией полевой шины. В частности, необходимо предусмотреть соответствующие оконечные нагрузки шины.

Экранирование кабеля и заземление

В системах с выравниванием потенциалов кабельный экран на источнике питания, в соединительной коробке и на датчике нужно соединить непосредственно с потенциалом "земли". Для этого в датчике экран должен быть подключен прямо к внутренней клемме заземления. Внешняя клемма заземления на корпусе должна быть низкоомно соединена с выравниванием потенциалов.

В случае установок без выравнивания потенциалов, подключите кабельный экран на устройстве питания и на датчике прямо к потенциалу земли. В соединительной коробке или Т-распределителе экран короткого кабеля к датчику нельзя подключать ни к потенциалу земли, ни к другому кабельному экрану.

Подключение

Двухкамерный корпус

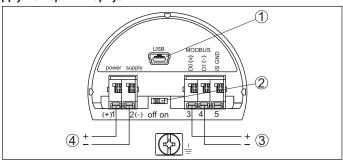


Рис. 42: Отсек подключения

- 1 Интерфейс USB
- 2 Переключатель для встроенного оконечного сопротивления (120 Ω)
- 3 Питание
- 4 Сигнал Modbus

Радар

13 Настройка

13.1 Настройка на месте измерения

Через модуль индикации и настройки, посредством клавиш Съемный модуль индикации и настройки предназначен для индикации измеренных значений, настройки и диагностики. Модуль имеет точечно-матричный дисплей с подсветкой, а также четыре клавиши для настройки.

Рис. 43: Модуль индикации и настройки, в однокамерном корпусе датчика

Через модуль индикации и настройки, посредством магнитного карандаша

В случае модуля индикации и настройки в исполнении с Bluetooth, настройку датчика можно выполнять посредством магнитного карандаша, управляя модулем индикации и настройки через прозрачное окошко закрытой крышки корпуса датчика.

Рис. 44: Модуль индикации и настройки - настройка посредством магнитного карандаша

Через ПК с PACTware/DTM

Для подключения датчика к ПК требуется интерфейсный адаптер VEGACONNECT, который устанавливается на электронику датчика вместо модуля индикации и настройки и подключается к порту USB компьютера.

Рис. 45: Подключение к ПК через VEGACONNECT и USB

- 1 VEGACONNECT
- 2 Датчик
- 3 Кабель USB к ПК
- 4 ПК с PACTware/DTM

РАСТware является программным обеспечением для конфигурирования, параметрирования, документирования и диагностики полевых устройств. Необходимые для этого драйверы устройств называются DTM.

13.2 Настройка на месте применения беспроводная, через Bluetooth

Через смартфон/планшет

Модуль индикации и настройки в исполнении с функцией Bluetooth обеспечивает возможность беспроводной связи с смартфоном/ планшетом с операционной системой iOS или Android. Настройка выполняется через приложение VEGA Tools App из Apple App Store или Google Play Store.

Рис. 46: Беспроводное подключение к смартфону/планшету

- 1 Модуль индикации и настройки
- 2 Датчик
- 3 Смартфон/планшет

Через ПК с PACTware/DTM

Беспроводная связь между ПК и датчиком осуществляется через подключенный на ПК адаптер Bluetooth-USB и установленный на датчике модуль индикации и настройки в исполнении с функцией Bluetooth. Настройка выполняется через ПК с PACTware/DTM.

Рис. 47: Подключение ПК через адаптер Bluetooth-USB

- 1 Модуль индикации и настройки
- 2 Датчин
- 3 Адаптер Bluetooth-USB
- 4 ΠΚ c PACTware/DTM

13.3 Настройна с удалением от места измерения - набельное соединение

Через выносные блоки индикации и настройки

Настройка может выполняться через модуль индикации и настройки, встроенный в выносной блок индикации и настройки VEGADIS 81 или 82.

VEGADIS 81 монтируется с удалением до 50 м от датчика и подключается прямо к электронике датчика. VEGADIS 82 подключается прямо в сигнальную линию в любом месте.

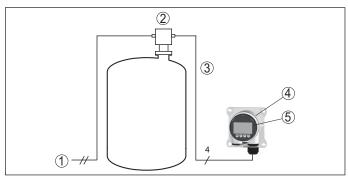


Рис. 48: Подключение VEGADIS 81 к датчику

- 1 Питание/Выход сигнала датчика
- 2 Датчик
- датим.
 Соединительный кабель между датчиком и выносным блоком индикации и настройки
- 4 Выносной блок индикации и настройки
- 5 Модуль индикации и настройки

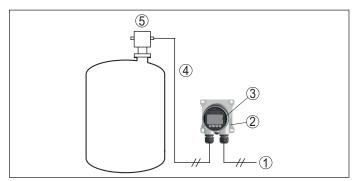


Рис. 49: Подключение VEGADIS 82 к датчику

- 1 Питание/Выход сигнала датчика
- 2 Выносной блок индикации и настройки
- 3 Модуль индикации и настройки
- 4 Сигнальная линия 4 ... 20 mA/HART
- 5 Датчик

Через ПК с PACTware/DTM

Настройка датчика осуществляется через ПК с ПО PACTware/DTM.

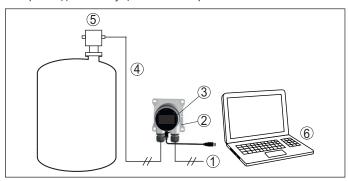


Рис. 50: Подключение VEGADIS 82 к датчику, настройка через ПК с PACTware

- 1 Питание/Выход сигнала датчика
- 2 Выносной блок индикации и настройки
- 3 VEGACONNECT
- 4 Сигнальная линия 4 ... 20 mA/HART
- 5 Датчик
- 6 ΠΚ c PACTware/DTM

13.4 Настройна с удалением от места измерения - беспроводное соединение через мобильную сеть

Мобильный модуль PLICSMOBILE может встраиваться в отсек подключения двухкамерного корпуса датчика plics[®]. Модуль служит для передачи измеренных значений и удаленного параметрирования датчика.

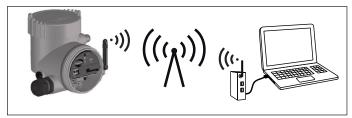


Рис. 51: Передача измеренных значений и удаленное параметрирование датчика через мобильную сеть

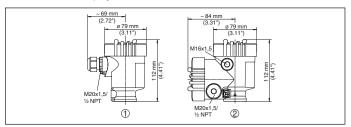
13.5 Альтернативное программное обеспечение для настройки

Настроечные программы DD

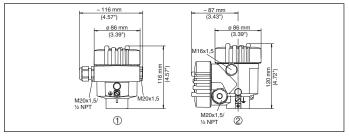
Для устройств имеются описания устройств в виде Enhanced Device Description (EDD) для настроечных программ DD, например AMS^{TM} и PDM.

Эти файлы можно загрузить с www.vega.com/downloads и "Software".

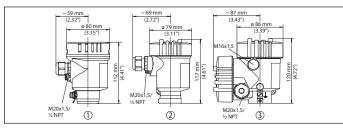
Field Communicator 375, 475


Для устройств имеются описания устройства в виде EDD для параметрирования с помощью коммуникатора Field Communicator 375 или 475.

Для интеграции EDD в Field Communicator 375 или 475 требуется программное обеспечение "Easy Upgrade Utility", получаемое от производителя. Это ПО обновляется через Интернет, и новые EDD после их выпуска автоматически принимаются изготовителем в каталог устройств этого ПО, после чего их можно перенести на Field Communicator.


14 Размеры

Пластиковый корпус


- Однокамерный корпус
- 2 Двухкамерный корпус

Алюминиевый корпус

- Однокамерный корпус Двухкамерный корпус

Корпус из нержавеющей стали

- Однокамерный корпус, электрополированный
- Однокамерный корпус, точное литье Двухкамерный корпус, точное литье

VEGAPULS WL 61

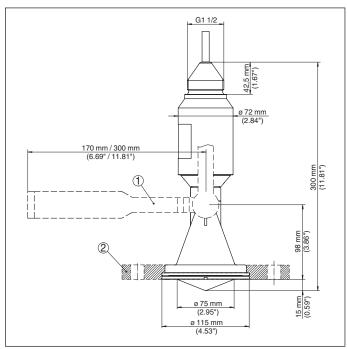
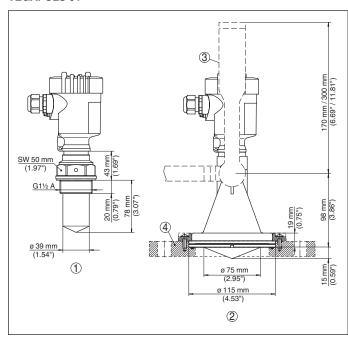
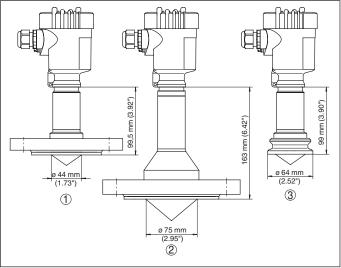



Рис. 55: Размеры VEGAPULS

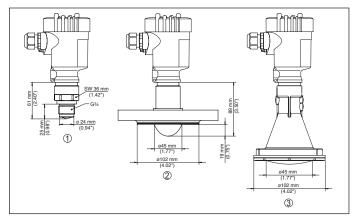
- Монтажная скоба
- Комбинированный накидной фланец

VEGAPULS 61

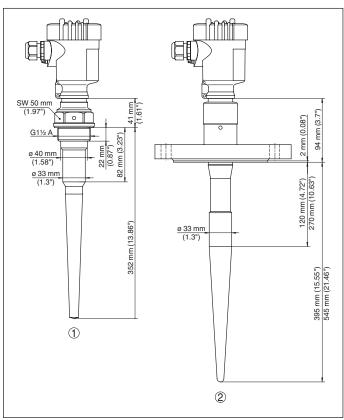
- Исполнение с герметизированной антенной системой (ø 40 мм)
- Исполнение с пластиковой рупорной антенной (ø 80 мм)
- Монтажная скоба
- Адаптерный фланец



VEGAPULS 62

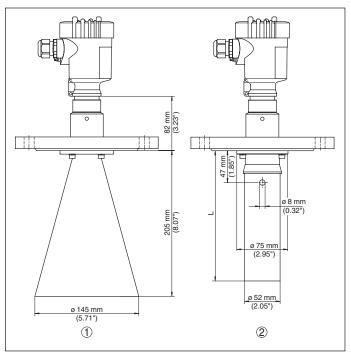

- 1 Резьбовое исполнение
- 2 Резьбовое исполнение с температурной вставкой до 250 °C
- 3 Фланцевое исполнение

VEGAPULS 63


- 1 Фланцевое исполнение DN 50
- ? Фланцевое исполнение DN 80
- 3 Исполнение с зажимом 2"

VEGAPULS 64

- 1 Фланцевое исполнение DN 50
- 2 Фланцевое исполнение DN 80
- 3 Исполнение с зажимом 2"


VEGAPULS 65

- 1 Резьбовое исполнение G1½
- 2 Фланцевое исполнение DN 80

VEGAPULS 66

- Исполнение с рупорной антенной ø 145 мм Исполнение с опускной трубой

На чертежах выше показаны только некоторые из возможных типов присоединения. Прочие чертежи можно найти на нашей странице www.vega.com/downloads и "Zeichnungen"

Вся приведенная здесь информация о комплектности поставки, применении и условиях эксплуатации датчиков и систем обработки сигнала соответствует фактическим данным на момент.

Возможны изменения технических данных

© VEGA Grieshaber KG, Schiltach/Germany 2018

